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Abstract 

Elementary fermions can be represented by couplings of two quaternionic fields. Each of these fields 

can be represented by a pair of a quaternionic function and a quaternionic parameter space. The 

parameter spaces and the functions differ in their symmetry flavor. The reverse bra-ket method can 

be used to relate these fields, the corresponding functions and their parameter spaces to operators 

that reside in quaternionic Hilbert spaces. The eigenspaces of these operators act as structured 

storage places. Obviously the properties of the elementary fermions and their behavior are directly 

related to the symmetry flavors of the coupled fields. 

Introduction 
Quaternionic number systems exist in many versions that differ in the way that these number 

systems are ordered. For example it is possible to order the real parts of the quaternions up or down. 

Or a Cartesian coordinate system can be used to order the imaginary parts of the quaternions. This 

can be done on eight mutually independent ways. It is also possible to apply spherical symmetric 

ordering by using a spherical coordinate system. This can be done by starting with the azimuth and 

order it up or down and then order the polar angle and order it up or down. It is also possible to start 

with the polar angle. A spherical coordinate system starts from a selected Cartesian coordinate 

system. 

The reverse bra-ket method [1] enables to attach all these different symmetry flavors of the 

quaternionic number system to dedicated operators that reside in an infinite dimensional separable 

quaternionic Hilbert space. Separable Hilbert spaces can only handle countable eigenspaces. Thus 

the reverse bracket method can only use the rational subsets of the quaternionic number systems. 

Each infinite dimensional separable Hilbert space owns a companion Gelfand triple, which is a non-

separable Hilbert space and which also supports operators that feature continuums as their 

eigenspaces. The reverse bra-ket method relates operators in the separable Hilbert space o 

operators in the Gelfand triple. 

These representations of quaternionic number systems can act as parameter spaces of quaternionic 

functions that can also be represented by operators and their eigenspaces. The reverse bra-ket 

method establishes this link. 

Together, this means that the two companion quaternionic Hilbert spaces can represent fields via the 

eigenspaces of some of their operators and that these fields can also be represented by pairs of 

quaternionic functions and their parameter spaces. 

Reverse bra-ket method 
The reverse bra-ket method enables the definition of several different parameter spaces that can 

coexist in the same quaternionic Hilbert space. 

Let {𝑞𝑖} be the set of rational quaternions in a selected quaternionic number system and let {|𝑞𝑖〉} be 

the set of corresponding base vectors. They are eigenvectors of the normal operator ℛ. We 

enumerate the base vectors with index 𝑖. 



ℛ ≡ |𝑞𝑖〉𝑞𝑖〈𝑞𝑖|  

ℛ is the configuration parameter space operator. 

This notation must not be interpreted as a simple outer product between a ket vector |𝑞𝑖〉,  a 

quaternion 𝑞𝑖 and a bra vector 〈𝑞𝑖|. It involves a complete set of eigenvalues {𝑞𝑖} and a complete 

orthomodular set of Hilbert vectors {|𝑞𝑖〉}. It implies a summation over these constituents, such that 

for all bra’s 〈𝑥|〉 and ket’s |𝑦〉: 

〈𝑥|ℛ 𝑦〉 = ∑〈𝑥|𝑞𝑖〉𝑞𝑖〈𝑞𝑖|𝑦〉

𝑖

 

ℛ0 = (ℛ + ℛ†)/2 is a self-adjoint operator. Its eigenvalues can be used to arrange the order of the 

eigenvectors by enumerating them with the eigenvalues. The ordered eigenvalues can be interpreted 

as progression values. 

𝓡 = (ℛ −  ℛ†)/2 is an imaginary operator. Its eigenvalues can also be used to order the 

eigenvectors. The eigenvalues can be interpreted as spatial values and can be ordered in several 

ways. 

Similarly in the Gelfand triple a corresponding reference operator ℜ can be defined. 

 

ℜ ≡ |𝑞〉𝑞〈𝑞| 

 

For all bra’s 〈𝑥|〉 and ket’s |𝑦〉 holds: 

〈𝑥|ℜ 𝑦〉 = ∫〈𝑥|𝑞〉𝑞〈𝑞|𝑦〉
𝑞

 𝑑𝑞 

 

The reverse bra-ket method relates pairs of natural parameter spaces and quaternionic functions to 

operators and their eigenspaces. ℱ defines a new operator that is based on quaternionic function 

ℱ(𝑞). Here we suppose that the target values of ℱ belong to the same version of the quaternionic 

number system as its parameter space does. Operator ℱ has a continuum quaternionic eigenspace. 

 

ℱ ≡ |𝑞〉ℱ(𝑞)〈𝑞|  

 

This is a shorthand for: 

 

〈𝑥|ℱ 𝑦〉 = ∫〈𝑥|𝑞〉ℱ(𝑞)〈𝑞|𝑦〉
𝑞

 𝑑𝑞 

 

The same trick works in the separable Hilbert space. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 



 

𝑓 ≡ |𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|  

 

𝑓 defines a new operator that is based on quaternionic function 𝑓(𝑞). Here we suppose that the 

target values of 𝑓 belong to the same version of the quaternionic number system as its parameter 

space does. Operator 𝑓 has a countable set of discrete quaternionic eigenvalues. 

For this operator the reverse bra-ket notation is a shorthand for 

〈𝑥|𝑓 𝑦〉 = ∑〈𝑥|𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|𝑦〉

𝑖

 

Symmetry centers 
Symmetry centers are representatives of parameter spaces that contain the spherically ordered 

version of the imaginary part of a quaternionic number system. Symmetry centers can float with 

respect to a background parameter space that is formed by a complete quaternionic number system, 

which features Cartesian ordering. The background parameter space is well ordered. It means that its 

members can be enumerated by its real parts. As a consequence that real part can be interpreted as 

progression. The background parameter space is the eigenspace of the normal reference operator ℛ. 

Symmetry centers have a well-defined spatial origin. That origin floats on the eigenspace of the 

reference operator ℛ. Symmetry centers are formed by a dedicated category of compact anti-

Hermitian operators {𝕾𝑛
𝑥}𝑛.  

Each symmetry center corresponds to a dedicated subspace of the infinite dimensional separable 

Hilbert space. That subspace is spanned by the eigenvectors {|𝖘𝑖
𝑥〉} of a corresponding symmetry 

center reference operator 𝕾𝑛
𝑥. Here the superscript  𝑥 refers to the type of the symmetry center. The 

subscript 𝑛 enumerates the symmetry centers. The type covers more than just the symmetry flavor. 

We will often omit the subscript. 

An infinite dimensional separable Hilbert space can house a set of subspaces that each represent 

such a symmetry center. Each of these subspaces then corresponds to a dedicated spherically 

ordered reference operator 𝕾𝑛
𝑥. The superscript  𝑥 distinguishes between symmetry flavors and 

other properties, such as spin and generation flavor. Symmetry centers correspond to dedicated 

subspaces that are spanned by the eigenvectors {|𝖘𝑖
𝑥〉} of the symmetry center reference operator 

𝕾𝑥. (Here we omit subscript 𝑛). 

 

𝕾𝑥 = |𝖘𝑖
𝑥〉𝖘𝑖

𝑥〈𝖘𝑖
𝑥| 

 

𝕾𝑥† =  −𝕾𝑥 

 

Only the location of the center inside the eigenspace of reference operator ℛ is a progression 

dependent value. This value is not eigenvalue of operator 𝕾𝑛
𝑥. The location of the center inside ℛ⓪ 

is eigenvalue of a central governance operator ℊ. 

(7) 

(8) 

(1) 

(2) 



The closed subspaces that correspond to a symmetry center have a fixed finite dimension. This 

dimension is the same for all types of symmetry centers. This ensures that symmetry related charges 

all appear in the same short list. 

Symmetry flavors 
Quaternions can be mapped to Cartesian coordinates along the orthonormal base vectors 1, 𝒊, 𝒋 and 

𝒌; with 𝒊𝒋 = 𝒌  

Due to the four dimensions of quaternions, quaternionic number systems exist in 16 well-ordered 

versions {𝑞𝑥} that differ only in their discrete Cartesian symmetry set. The quaternionic number 

systems {𝑞𝑥} correspond to 16 versions {𝑞𝑖
𝑥} of rational quaternions.  

Half of these versions are right handed and the other half are left handed. Thus the handedness is 

influenced by the symmetry flavor. 

The superscript  𝑥 can be  ⓪,  ①,  ②,  ③,  ④,  ⑤,  ⑥,  ⑦,  ⑧,  ⑨,  ⑩,  ⑪,  ⑫,  ⑬,  ⑭, or ⑮.  

This superscript represents the symmetry flavor of the superscripted subject. For the reference 

operator we neglect the superscript  ⓪. 

The reference operator ℛ = |𝑞𝑖〉𝑞𝑖〈𝑞𝑖| in separable Hilbert space ℌ maps into the reference operator 

ℜ = |𝑞〉𝑞〈𝑞| in Gelfand triple ℋ. 

The symmetry flavor of the symmetry center 𝕾𝑥, which is maintained by operator 𝕾𝑥 = |𝖘𝑖
𝑥〉𝖘𝑖

𝑥〈𝖘𝑖
𝑥| is 

determined by its Cartesian ordering and then compared with the reference symmetry flavor, which 

is the symmetry flavor of the reference operator ℛ.  

Now the symmetry related charge follows in three steps. 

1. Count the difference of the spatial part of the symmetry flavor of symmetry center 𝕾𝑥 

with the spatial part of the symmetry flavor of reference operator ℛ. 

2. If the handedness changes from R to L, then switch the sign of the count. 

3. Switch the sign of the result for anti-particles. 

We use the names of the corresponding particles that appear in the standard model in order to 

distinguish the different symmetry flavor combinations. Elementary fermions relate to solutions of a 

corresponding second order partial differential equation that describes the embedding of these 

particles. Elementary bosons relate to solutions of a different second order partial differential 

equation. 

Fermion symmetry flavor 

Ordering 

x   y   z    τ 

Super 

script 

Handedness 

Right/Left 

Color 

charge 

Electric 

charge * 3 

Symmetry center type. 

Names are taken from the 

standard model 

 ⓪ R N +0 neutrino 

 ① L R −1 down quark 

 ② L G −1 down quark 

 ③ L B −1 down quark 

 ④ R B +2 up quark 

 ⑤ R G +2 up quark 

 ⑥ R R +2 up quark 

 ⑦ L N −3 electron 

 ⑧ R N +3 positron 

 ⑨ L R −2 anti-up quark 



 ⑩ L G −2 anti-up quark 

 ⑪ L B −2 anti-up quark 

 ⑫ R B +1 anti-down quark 

 ⑬ R R +1 anti-down quark 

 ⑭ R G +1 anti-down quark 

 ⑮ L N −0 anti-neutrino 

 

Elementary fermions switch their handedness when the sign of the real part is switched. Spherical 

ordering can be done by first starting with the azimuth and next proceeding by the polar angle. Both 

can be done up or down. Fermions and bosons appear to differ in this choice. 

Also continuous functions and continuums feature a symmetry flavor. Continuous quaternionic 

functions 𝜓𝑥(𝑞𝑥) and corresponding continuums do not switch to other symmetry flavors  𝑦.  

The reference symmetry flavor 𝜓𝑦(𝑞𝑦) of a continuous function 𝜓𝑥(𝑞𝑦) is the symmetry flavor of 

the parameter space {𝑞𝑦}.  

If the continuous quaternionic function describes the density distribution of a set {𝑎𝑖
𝑥} of discrete 

objects 𝑎𝑖
𝑥, then this set must be attributed with the same symmetry flavor  𝑥. The real part 

describes the location density distribution and the imaginary part describes the displacement density 

distribution. 

Fields 
Symmetry centers feature a symmetry related charge that depends on the difference between the 

symmetry flavor of the symmetry center and the symmetry flavor of the reference operator ℛ, which 

equals the symmetry flavor of the embedding continuum ℭ. The symmetry related charges raise a 

symmetry related field 𝔄. The symmetry related field 𝔄 influences the position of the center of the 

symmetry center in parameter space ℛ and indirectly it influences the position of the map of the 

symmetry center into the field that represents the embedding continuum ℭ. Both fields, 𝔄 and ℭ use 

the eigenspace of the reference operator ℜ as their parameter space. 
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